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RESUMO

A auto-dualidade desempenha um importante papel em muitas aplicagoes em teorias
de campos que possuem solitons topologicos. Em geral, as equacoes de auto-dualidade
sao equacoes diferenciais parciais de primeira ordem tais que suas solugoes satisfazem
as equagoes de Euler-Lagrange de segunda ordem da teoria. O fato de que é necessario
realizar uma integracao a menos para construir solitons auto-duais, comparado com os
solitons topolégicos usuais, ndao é ligado ao uso de alguma quantidade dinamicamente
conservada. E importante que a carga topoldgica seja representavel em forma integral,
e assim exista uma densidade de carga topoldgica. A invaridncia homotépica da carga
topoldgica leva a identidades locais, na forma de equacgoes diferenciais de segunda ordem.
A relevancia disso é devido a essas identidades se tornarem as equagdes de Euler-Lagrange
da teoria quando as equagoes de auto-dualidade sdo impostas. Serao revisadas algumas
importantes estruturas fundamentais do conceito de auto-dualidade, e mostrado como

pode ser aplicado a kinks, lumps, monopolos, Skyrmions e Instantons.

Palavras-chave: Solitons topolégicos. Auto-dualidade. Carga topoldgica.
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1 INTRODUCAO

Solitons topolégicos desempenham papel fundamental no estudo de fenoménos nao
lineares em diversas areas da fisica, eles aparecem em uma variedade de teorias, como kinks
em (14 1) dimensoes, vortices em (2 + 1) dimensoes, monopolos magnéticos e Skyrmions
em (3+1) dimensoes e Instantons em quatro dimensoes euclidianas. Os sélitons topoldgicos
sao relevantes para muitos fendomenos nao lineares na fisica de altas energias, matéria

condensada e na ciéncia em geral.

Dentre os sélitons topologicos existe uma classe especial, os chamados sélitons
auto-duais. Eles sao solugoes classicas das equacgoes de auto-dualidade, que sao equagoes
de primeira ordem que implicam nas equagoes de Euler-Lagrange da teoria. Além disso,
em cada setor topoldgico, isto é, o conjunto das solucdes que possuem a mesma carga
topoldgica associada, existe um limite inferior da energia estatica, ou acao Euclidiana,
e os soltions auto-duais saturam esse limite. Portanto, os sélitons auto-duais sao muito

estaveis.

A razao pela qual se realiza apenas uma integragao para construir os sélitons
auto-duais, ao invés de duas para o caso de séltions topologicos usuais, nao esta ligada a
conservacao de uma quantidade dinamicamente. Em todos os casos que a auto-dualidade
funciona, a carga topolodgica relevante admite uma representagao integral, ou seja, existe
uma densidade de carga topoldgica. A invaridncia da carga sobre qualquer variacao
suave (homotdpica) dos campos leva a identidades, em forma de equagoes diferenciais
de segunda ordem, que sdo satisfeitas por qualquer configuracao regular dos campos,
nao necessariamente solucdo da teoria. Entretanto, com a imposicao das equagoes de

auto-dualidade essas identidades se tornam as equacoes de Euler-Lagrange da teoria.

Utilizando o conceito de auto-dualidade generalizada se pode criar, com uma carga
topolégica, uma grande classe de teorias de campo contendo setores auto-duais (1). Em
(1 + 1) dimensoes foi possivel criar teorias de campo, com qualquer nimero de campos
escalares, contendo solitons topoldgicos, generalizando o processo conhecido para teorias

com somente um campo escalar, como o modelo de sine-Gordon e A\¢* (2).

Nesse trabalho, serao revisados os recentes desenvolvimentos e aplicagoes do conceito

de auto-dualidade generalizada proposto em (1), de uma forma simples e concisa.!

L Sera utilizada a convencdo de soma em indices repetidos durante todo trabalho.






2 AUTODUALIDADE GENERALIZADA

Considere uma teoria de campos que possui uma carga topoldgica que admite

representacao integral da forma
1 . -
0= /ddx (Ao AL+ AL A (2.1)

onde A, e A, sao funcionais somente dos campos da teoria e das suas primeiras derivadas,
onde * se refere somente a conjugado e nao transposto conjugado, a se refere a qualquer
grupo de indices. O fato de Q ser topoldgico significa que ele é invariante por qualquer
variacao homotdpical dos campos. Os campos serdo representados por ., eles podem ser
escalares, vetoriais ou campos espinores, e o indice k segue a mesma légica do indice «
anterior. Os campos Y, serdao considerados reais, ou seja, caso existam campos complexos

X, assume a parte real e imaginaria desses campos.
A invariancia de Q sobre variagoes suaves dos campos leva a identidade

6Aa -, 6Aa 1, SAL SA:
50=0 — EAa D, ((mmAa) + A S 0 (Aa 68,»@) +

SAL - SAL AL L 0AL N
5y Ao =0 ( : Mﬁ%) A O (Aa 6%5) = 0.

(2.2)

Impondo as equacgoes, de primeira ordem, de auto-dualidade nos campos

Ao = %A, , (2.3)

junto com a identidade (2.2), temos as equagoes

SA,L SAL SA SA*
R (6@»@“““) A, O (“4“ 5@%) *

SA: - SAX - - 0A, o 0AL\
g0, (WEAQ) LA, (Aa 5%) _o.

(2.4)

Note que (2.4) sao as equacoes de Euler-Lagrange associadas ao funcional
1 L.
E= / dla [A AL+ AuAz] (2.5)

Portanto, equacoes diferenciais de primeira ordem, em conjunto com identidades
topologicas de segunda ordem, implicam as equagoes de Euler-Lagrange de segunda ordem.

Além disso, se E for positivo definido, entao as solugdes auto-duais saturam um limite

L Ou suave.



10

inferior na energia da seguinte forma. De (2.3): A2 = A2 = +A,A,, (2.3) também implica
.Aajlz = AZAO, Dessa forma, se A,.A% > 0, e consequentemente ./Ia/lz >0:
Av=A, — Q:/dda:AaA’;

) (2.6)
Av=-As — Q= —/ddx AA

Dessa forma, é possivel reescrever o funcional de energia (2.5) como
1 -
B [dte (A A (A A £ 5 [ae [A& + A4 210, @)
onde, para solucoes auto-duais, vale a igualdade da relagao

E= /dda: A A = /dda: A4 =19 . (2.8)

A forma de separar o integrando de Q em (2.1) é bastante arbitraria, mas feita

essa escolha ainda é possivel realizar uma transformagao simples da seguinte forma:

A, — .A/a = Algklga ; .[lz — (A/O[)* = k;lfiz . (29)

Essa transformacao nao muda a forma da carga topoldgica, portanto Q continua
invariante por transformacgoes homotdpicas dos campos. Logo, o mesmo desenvolvimento
anterior para os funcionais A, e Aa pode ser repetido para os funcionais transformados
Al e A/, Assim, as novas equacdes de auto-dualidade sio

Agkge = £(k 5)" As  —  Aghga = £ A, , (2.10)
em que foi definida a matriz inversivel e hermitiana:

h=Ekk'. (2.11)

Junto com as identidades transformadas (2.2), as novas equagoes de auto-dualidade

(2.10) implicam as equagoes de Euler-Lagrange do funcional
1 N T T
B =5 [ de [Auhas Ay + AuhifA5) (2.12)

Note que a matriz h pode introduzir novos campos na teoria sem mudar a carga
topologica.

Além disso, de (2.10): Ayhap Al = ./Zlah;lfl}} = ﬂ:Aale = j:AZ.AIa. Portanto, se
Aghsa Az > 0, e consequentemente A,k 3 A% > 0, o limite inferior na energia (E' nesse
caso) segue da mesma forma que anteriormente

1 —1\% A * 7% *
B == / Az [Agkso F (k; 1) As] [A3KS, F Kot AY]
(2.13)
4= /dd [AAL + AL AL > 19

A seguir, serao examinadas algumas teorias em que sao aplicadas as ideias discutidas

nessa secao.
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3 KINKS COM VARIOS CAMPOS EM (141) DIMENSOES

Setores auto-duais para teorias em (14 1) dimensées, contendo somente um campo
escalar, como modelos de sine-Gordon e \¢*, sao conhecidos ha bastante tempo. A aplicacao
das ideias discutidas nas segOes anteriores levou a construcao de setores auto-duais em
teorias em (1 + 1) dimensoes com qualquer nimero de campos escalares (2). Nesta se¢do

serao considerados campos escalares reais. A carga topoldgica nesse caso é

U e U dg,
0= [T g = [T arg P = Ul =) ~Ulpula =), (3)

em que U é um funcional real arbitrario dos campos ¢,, a = 1,2, ...,r, mas nao de suas
derivadas.! A equacio acima estd na mesma forma de (2.1), assim é possivel realizar as

identificacoes
d(pﬁ ~ (5U —1
a = koz 5 a = —k ) 3.2

onde os funcionais A, A, e k sdo reais, e a matriz £ também é inversivel e arbitraria. De

acordo com (2.10), as equagdes auto-duais sao

Nab—— =

— = kTE . 3.3
dI 5()011 ) 77 ( )

Entéao, 1 é uma matriz simétrica e inversivel. Seguindo (2.12), a energia estética da

nossa teoria se torna

[ 1 de, dpy
E = ‘/_OO dz [2nab dr E + V‘| 5 (34)

onde a forma do potencial é

y_L U

5 Nab 67%67% . (3-5)

Portanto, dos argumentos da se¢do anterior, segue que as solugoes de (3.3) sao
também solugoes das equagoes de Euler-lagrange do funcional (3.4), onde a quantidade U
desempenha o papel de um pré-potencial. Note que, dado a escolha de um pré-potencial
U, é possivel determinar o potencial V' e também uma teoria de campos escalares com um
setor auto-dual. Entretanto, dado um potencial, nao é trivial encontrar o pré-potencial U;
tendo isso em vista, sera discutida a construcao de teorias auto-duais por meio da escolha
do pré-potencial. Nesse sentido, a analise sera restringida para casos em que os campos
escalares ¢,, o pré-potencial U e a matriz n sejam reais. Além disso, é imposto que o
funcional E (3.4) seja positivo definido, dessa forma os autovalores de n também devem

ser positivos.

1 Isso serd importante para que a carga topolégica nio seja funcao de derivadas de mais do

que primeira ordem dos campos.



12

Para que as solugoes auto-duais de (3.3) tenham energia finita, é necessario que a
densidade de energia em (3.4) desaparega para infinitos espaciais quando evaluado nessas

solugoes, logo ¢é necesséario que

dea J
LN ; v —0; com  x — too. (3.6)
dx 0P,

Portanto, as equagoes de auto-dualidade (3.3) devem possuir solugoes constantes

de vacuo gol(;’“c) que sejam zeros para todas derivadas do pré-potencial, ou seja,
oU
S0 =0. (3.7)
X

De (3.5), essas solugdes de vacuo também sdo zeros do potencial V' e de suas

primeiras primeiras derivadas, ou seja,

%

V)0 W

=0. (3.8)

pamil?™

Ademais, é desejavel que as teorias contruidas tenham diversas solugoes tipo soliton,
e que tenham um sistema de vacuos tao degenerados quanto possivel para manter as
estruturas topoldgicas nao triviais de Q. Existem diversas formas de obter esse sistema de
vacuos; nesse trabalho, serd adotado o mesmo procedimento que em (2), baseado na teoria
de grupos. Nao sera discutido o procedimento de criagdo dos pré-potenciais; para detalhes,

consultar (2).

3.1 Interpretacdo mecanica de solucdes auto-duais.

Tendo como base os desenvolvimentos em (3.6) e (3.7), solugoes da equagao de
auto-dualidade (3.3) com energia finita devem tender a solugoes constantes de vacuo
quando x — +o00. Assim, cada uma dessas solu¢oes conecta dois vacuos da teoria. Para
desenvolver uma visualizagao geométrica dessas solugoes, serao reescritas as equacoes de

auto-dualidade da seguinte forma:

, dga ,
7==xV,U; com (V) = dsi ; (V,?U)a =

Dado o potencial U e a métrica 7, que é real, constante e positiva, ﬁnU define
curvas no espaco dos campos (¢1, pa, ... , ¢,),% fazendo o papel de vetor tangente a essas
curvas. Essas curvas nao se intersectam; para manter ﬁnU bem definido em qualquer ponto

do espago dos campos, no maximo elas podem se tocar tangencialmente ou se encontrar

2 O findice utilizado (r) a principio ndo possui qualquer significado, mas o uso se deu devido ao

conceito de rank de uma &algebra de Lie. No caso das construgdes utilizando teoria de grupos:
r = rank (G).
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em pontos em que ﬁnU zera. A equagdo de auto-dualidade (3.3) é uma equagao diferencial
de primeira ordem, logo uma solucao ¢ determinada pelo valor dos campos ¢, em um

ponto x = x.

A vis@o geométrica é a de uma particula viajando no espago dos ¢, com z-velocidade
¥ e com a coordenada espacial x desempenhando o papel do tempo. Portanto, o problema
de resolver a equagao de auto-dualidade se reduz ao de construir curvas no espaco dos
campos determinadas por ﬁnU . As solugoes de energia finita correponderao as curvas

que comecam e terminam nos extremos do pré-potencial U, ou seja, nos pontos em que

V,U = 0.

Considere agora uma curva 7 no espac¢o dos campos, parametrizada por z, ou seja,
wa(), que seja solugdo das equagoes de auto-dualidade (3.3). Associada a essa curva é
definida a quantidade

Qv) = /

~

- dp, OU
dz 7- :/d
xzv-VU ; T dz oo,

— Ulay) = Ulay), (3.10)
em que zy e x; sao os pontos final e inicial, respectivamente, da curva 7. Perceba que o
vetor tangente a curva é ﬁnU e nio VU , uma vez que a curva € solucao das equagoes
(3.3). Utilizando as equagoes de auto-dualiadade é possivel reescrever a equagao (3.10) da

seguinte forma:

Q()::I:/dx d%d%_:l:/dxw LAY (3.11)
8 . Mab dr dz ’ a dz ) .
em que a matriz n foi diagonalizada, ou seja,

n=A"nPA; ATA=1; nh = wadap ; we >0, (3.12)

onde foi assumido que todos autovalores de 7 sao positivos, e foi definido ¢, = Agywy.
Mantendo 1 como positiva definida, a quantidade Q(v) sO pode assumir o valor zero se os
campos forem constantes por toda curva, ou seja, a curva teria que se reduzir a um ponto.
Logo, as solugbes das equagoes de auto-dualidade (3.3) nao podem comegar e acabar em
pontos no espago dos campos em que o pré-potencial U possui o mesmo valor. Além disso,
conforme alguém anda pela curva a diferenga do valor do pré-potencial de um particular
ponto e do ponto inicial sempre aumenta em modulo. Portanto, a curva, que é solugao das
equacoes (3.3), sempre escala o pré-potencial U, para cima ou para baixo dependendo do

sinal tomado na equagao (3.3), sem nunca retornar a uma altitude ja atingida.

3.2 Exemplo - SU(3)

Nesta se¢ao sera apresentado um exemplo concreto dos conceitos discutidos nas
segoes (2) e (3). No exemplo que segue, a matriz 7 sera constante®, real e positiva definida.

Mesmo com essas restrigoes ainda é possivel construir teorias interessantes.
3

Isto é, ndo ird depender dos campos ¢, da teoria ou de outros campos externos.
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O rank de SU(3) é dois, portanto a teoria possuird dois campos ¢; € 9. A matriz

n é escolhida tal que?

92—\ ) 1 (2 )\
_ : -1 _ , 3.13
n (_A 2) 7 4—)\2()\ 2) (3.13)

onde foi introduzido o parametro real A\. Os autovalores de 1 sdo 2 + A, portanto A\ deve se

manter no intervalo 2 < A < —2, para manter 7 positiva definida e inversivel. Por meio de

um procedimento utilizando teoria de grupos®, é obtido o pré-potencial

U = ~1cos (1) + 72 cos (p2) + 73 cos (1 — @2) , (3.14)

em que vy, Y2 € 73 sdo constantes arbitrarias.

A energia estatica (3.4) se torna

F = /_OO dx {(ax(pl)2 —+ (aq:(pg)2 _ )\81901893@2 + V(@l, (,02)} , (315)

onde o potencial (3.5) é dado por

- )\21_ 1 (=1 sin® (1) + 71 8in(01) (93(A = 2) sin(o1 — @2) — 72Asin(p2)) (3.16)

— 72 sin®(2) — 1273(A — 2) sin(i2) sin(p1 — 2) + 75 (A — 2) sin(01 — 2)] -

V

As equagoes de auto-dualidade (3.3) sao da forma

271 sin(p1) + Myasin(pz) — 73(A — 2) sin(p1 — @o)]

895 = :i: )
- _ LA , (3.17)
_ [29e8in(p2) + AMysin(ier) +93(A — 2) sin(p1 — o))
axSDZ ==+ .
A2 —4
Os vécuos sao determinados pelas condigoes (3.7), que implicam
osin () = —gsin (o) — ) = —psin (7). (318)
Certamente, a equacao acima é satisfeita se
o) = pomr neg € Z, a=1,2, (3.19)

para qualquer valor para os coeficientes . Entretanto, existem outros tipos de vacuo que

dependem do valor escolhido para cada v, como

vac vac 27T 47T
(@g ), 0% )):(3+27rn1,3+27rn2); Mm=rr=73=1,
A (3.20)
(vac)  (vac) ™ 27 .
(901 , ©5 ):(3+27rn1,3+27rn2>, ny,ng €2Z.

Note que n|y=1 = K, com K sendo a matriz de Cartan de SU(3). (3)
A construgao se baseia nos pesos das representacoes da algebra. Para mais detalhes consultar

(2)-

5
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Figura 1 — (a) e (c) sdo representagoes do pré-potencial (3.14), e (b) e (c¢) do potencial
(3.16). Os véacuos do tipo (3.19) sd@o os pontos pretos, enquanto os do tipo
(3.20) sao denotados por quadrados em branco. As linhas representam o fluxo
de VU e VV, em que V = (Op,,0,,). Nos graficos, foi utilizado A = 1 e
Nn=7%=7=1L

Fonte: Elaborado pelo autor.
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4 LUMPS EM (2 + 1) DIMENSOES

Como um exemplo de uma teoria com um setor auto-dual, sera considerado o modelo
CPY~! em (2+1) dimensdes. CPY ™! é 0 espaco projetivo complexo de (N —1) dimensdes, ou
seja, o espago de todas as classes equivalentes de vetores complexos z = (21, 22, ..., 2Zn),
tal que dois vetores z e 2’ sdo equivalentes se z’ = Az, sendo A\ um ntimero complexo (4,5).

Serao considerados os representantes dessas classes como os vetores unitarios

2= (21,22, .y 2N) ; 20z =1. (4.1)

CPY~! ¢ isomérfico a SU(N)/SU(N — 1) ® U(1). De fato, o grupo SU(N) age
transitivamente nos vetores z por meio da sua representacao definidora N — dimensional.
Como essa representagio ¢ unitaria, sua acao preserva o modulo dos vetores z, e um dado
vetor é mantido invariante por matrizes (N — 1) x (N — 1) unitérias, ou seja, o subgrupo
UN-1)=SUN-1)eU®).

O segundo grupo de homotopia de CPV™!

ou seja, mo (SU(N)/SU(N —1)®@ U(1)) = Z. A carga topoldgica associada possui uma

representacao integral da forma

¢é isomorfico aos inteiros sobre adigao,

— 1 2
Q - %/d x EpuauAV ) (42)

onde

A, = % (ZT@LZ — Q,z*z) . (4.3)

A integragao em (4.2) é no plano bidimensional (z1, x2), que, identificando o infinito espacial,
é isomorfico & S%.! Sobre a transformagdo local z — €z, serd obtido A4, — A, — 9,«.

Definindo a derivada covariante D, = d, +iA,, (4.2) pode ser reescrita como

' 1
Q= i /dQI e (D2) (Dy2) = o /de {(Duz)Tisw D,z + (igu Dyz)t Duz} . (4.4)

Seguindo (2.9), sao definidas as quantidades:

i

A2 = (D), ks ; At = (k) ieu (Du2), . (4.5)

logo a carga (4.4) pode ser escrita na forma (2.1). De (2.10), as equagoes de auto-dualidade
sao
(Dp2)y hea = £icu (Dyz), - (4.6)

De acordo com (2.12), o funcional da energia se torna

o ; [ 2 (D) has (D), + (Do) g (D)) (4.7)

L Superficie da esfera tridimensional.
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Contraindo os dois lados de (4.6) com ¢,,, obtém-se
(Duz), = Ficu (Dyz), hia - (4.8)
Portanto, (4.6) e (4.8) implicam
(Duz)y (hba = hi) =0 = h*=1, (4.9)

mas uma matriz hermitiana pode ser diagonalizada por uma transformacgao unitaria,

h = UhpUT', com hp diagonal. Logo
h? =1 — hy =1, (4.10)

assim \? = 1. Porém, para a energia E (4.7) ser positiva definida, é necessdrio que todos

autovalores de h tenham o mesmo sinal. Entao
h=1. (4.11)
Nesse caso, (4.6) reduz-se as equagoes de auto-dualidade para o modelo CPY ™! usual (4,5),
(Dyz), = i (Dyz), , (4.12)
e (4.7) & energia usual do modelo CPY !,

E:/&xwﬂﬂaﬂ. (4.13)

Para construir solugdes auto-duais da equagao (4.12), é conveniente introduzir

novos caimpos complexos U, COINO

. , . A 1
(ugj),ugj), ...,u%ll,u%)) = ;(21,22, ey ZNZ1,2N) (4.14)
j

em que ug-] ) = 1, ou seja, as coordenadas sao ug), a # j. Pode ser escolhida qualquer
componente z, para construir o campo u,; nesse caso, sera escolhida a componente zy,
logo ug, = 1,..., N — 1 sdo as coordenadas. Podemos reescrever a equagao (4.12) em

termo das novas coordenadas da seguinte forma: (4)

Opig = i, 0y ; a=1,2,...N—1. (4.15)

Essas sao as equagoes de Cauchy-Riemann para os campos u. De fato, o sinal (+)
implica que u é holomorfico, ou seja, u, = u,(w), e o sinal (—) que u é anti-holomérfico,

ou seja, ug = ug(w*), em que w = xy + iTs.
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5 (3+1) DIMENSOES E INSTANTONS EM (4 + 0) DIMENSOES

5.1 Monopolos

Sera considerado o caso da carga magnética topoldgica definida pela integral no

espaco de trés dimensoes R?

1
Oy = —5 /3 dSI‘Sijk Tr (E]Dkq)) = /3 A3z Tr (BzDz) , (51)
R R
1
onde B; = —3 €ijk Fji € 0 campo magnético nao abeliano, Fj; = 0;A; — 0;A; —ie[A;, Aj] =
FZT, o tensor dos campos, A; = A{T, o campo de gauge, e & = T, o campo de
Higgs na representagao adjunta de um grupo de Lie simples e compacto, com geradores
To, a=1,2,....dimG. Além disso, D;(x) = 0;(x) + ie[A;, (x)] é a derivada covariante na

representacao adjunta de G.

Nesse caso todos os campos sdo reais. Logo, seguindo (2.10) e os resultados em (6),

sao introduzidas as quantidades reais
Ao = Bk ; A, = ka_bl(D,@)b , (5.2)

entao (5.1) pode ser escrita como (2.1). As equagbes de auto-dualidade (2.10) se tornam

1
5 Eije i oo = £(D;®)" ; h=kk", (5.3)

com hg, a,b = 1,2,...,dim G, uma matriz simétrica e inversivel de campos escalares.
As equagdes (5.3) constituem uma generalizacao das equagoes BPS (Bogomolny-Prasad-

Sommerfield) (7,8) para monopolos auto-duais. O funcional de energia (2.12) se torna
(6)
i ig

1 1
Byaun = [ & [4@,@. Fh+ sha (D) (D] (5.4)

portanto essa ¢ uma teoria com campos de gauge A,, campo de Higgs ® na representacao
adjunta do grupo de gauge, e campos escalares reais na matriz h. A energia (5.4) avaliada

nas solugdes auto-duais de (5.3) é igual a carga magnética topoldgica

Para mais detalhes na construcao de solu¢oes auto-duais dessa teoria, consultar

(6).
5.2 Skyrmions

Skyrmions sao sélitons topoldgicos solugoes de teorias em (3 4 1) dimensdes com o

grupo SU(2) como espago-alvo. Os trés campos em SU(2) sao interpretados como os trés
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pions 7, 7 e 7. Essas solugoes sao interpretadas seguindo a proposta de Skyrme (9, 10),

em que a carga topoldgica desempenha o papel de niimero barionico (11,12).

A carga topoldgica relevante nesse caso é dada pela integral sobre o espaco tridi-

mensional R?

Qp = 48;2 / & K (U) ey Te(RiR; Ry) | (5.6)

com R; = i0;,UU" = R¢T,, U € SU(2), e K(U) é um funcional real arbitrario dos campos
quirais U, mas nao de suas derivadas. K pode ser interpretado como uma deformacao
na métrica do espago-alvo SU(2). A notagao utilizada é tal que Tr(7,T}) = d4p, com
T., a=1,2,3 sendo os geradores da dlgebra de Lie de SU(2).

Seguindo (2.1), serdo definidas as quantidades reais

A 5
Ao = rein Te(RiR; Ry) 5 A=K =V, (5.7)

em que A e u sdo constantes de acoplamento, e V' desempenha o papel de um potencial.

As equagbes de auto-dualidade (2.3) se tornam

A
o ik Te(RiR; Ry) = & AT (5.8)

Assim, o funcional de energia se torna

E= /d?’[

com By = ¢;;;Tr(R; R;Ry). Esse modelo foi proposto em (13) e foi aplicado em muitos

By + 12V (5.9)

contextos em fisica de estrelas de neutréns e nuclear (14). As solugoes de (5.13) foram cons-
truidas utilizando um ansatz esfericamente simétrico, para o potencial V = Tr(1 — U)/2,
as solugoes sao de tal forma que os campos vao a zero para um valor finito de distancia

radial.

5.3 Um modelo mais geral do Skyrme auto-dual

Usando o fato de que as quantidades R; = i0;UUT satisfazem a equacdo de Maurer-

Cartan

8,R, — 0,R, +i[R,, R,] =0 | (5.10)

podemos escrever a carga topologica (5.6), para K = 1, como

/ &z e, Tr(Ri(0,Ry, — OR;))

Op = gy [ 0 ey TX(R (R, Ri)) =

967r2 967T2

_ d3 ; a a — / d3 a fa
487r2 / v et 0 487T2 Mo ALAL

(5.11)

em que foram introduzidas as quantidades reais

|
Al =mo Rk ;AP = —ky' endiRy (5.12)
€o

(3
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sendo k., uma matriz inversivel, my e ey constantes de acoplamento. Logo, a carga
topoldgica (5.6), para K = 1, pode ser escrita da mesma forma que (2.1). Com isso, as

equagoes de auto-dualidade (2.3) se tornam

1
A hapRY = 3 ik Hjy com A = tmgeg , (5.13)

onde h = kk™ é uma matriz real, simétrica e inversivel, e definimos H = O;R} — O; R} =

5abcRZRf,. Dessa forma, o funcional de energia (2.12) se torna

E—/d%[mgh ROR + L p-lpe ppb (5.14)
- 9 abil; LY ijtLig | - :

2 "'%ab *44
dez

A energia das solugoes auto-duais de (5.13) é dada por

E=4872"° Q| . (5.15)
€o

Essa teoria foi proposta em (15) e explorada mais a fundo em (16), em que as
entradas da matriz hy, sao consideradas como seis campos reais adicionados a teoria. Note
que, para h = 1 o modelo se reduz para o modelo original de Skyrme. A carga topolégica
(5.11) é interpretada, seguindo Skyrme, como o nimero baridnico. Mais recentemente,
tal modelo foi extendido considerando uma poténcia fracional da densidade de carga
topolégica como um parametro de ordem para descrever um fluido de matéria barionica. O
modelo descreve com boa precisao a energia de ligacao de mais de 240 nicleos, e também

a relacao entre seus raios e nimero barionico.

5.4 Instantons

Como um tltimo exemplo de aplicagdo dos métodos descritos no capitulo 2, sera
apresentado o caso de solugoes de instantons para a teoria de Yang-Mills em quatro dimen-

soes Euclidianas. A carga topoldgica relevante para esse caso é o nimero de Pontryagin
Oyus = / Ao Te(F,, ™) | (5.16)

sendo F},, o tensor dos campos e FW seu dual de Hodge, ou seja,

1
Fuy = 0,A, — 0,A, + ie[A,, A)] ; Fous = 5 €uwp F*° (5.17)

sendo A, o potencial de gauge para um grupo compacto de Lie. Seguindo (2.1):

ACXEF/JJ/; Aa

E,, . (5.18)
Assim, as equagoes de auto-dualidade (2.3) se tornam

uv — :EF,U,I/ ) (519)
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e o funcional (2.5) se torna a agido Euclidiana de Yang-Mills !
Syar = - /d4 Tr(Fyu Fy) + Tr(F /d4xTrF Fo). (520

As solugoes de (5.19) sao bem conhecidas e sdo chamadas de solugoes instanton da
teoria de Yang-Mills. Essas solugoes desempenham papéis importantes na estrutura dos

vacuos e também fendmenos nao perturbativos em teorias de Yang-Mills (11,17).
Seguindo (2.9), é possivel introduzir uma matriz inversivel, simétrica e real h,, nas
equagoes de auto-dualidade (5.19)
Fp, hye = £F5, ; Fu =F.T,, F=F.T,, (5.21)

pv

comT,,a=1,2,...,dimG, sendo T, uma base para a algebra de Lie para o grupo de gauge
G. Além disso, seguindo o mesmo procedimento que de (4.9 - 4.11) chegamos a conclusao

de que h = 1.

1 Aqui foi utilizado o fato de que Tr(F},, F,) = Tr(

ﬁjz
tﬁjl
N
N———
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6 CONCLUSAO

O objetivo desse trabalho foi revisar estruturas fundamentais do conceito de auto-
dualidade, e mostrar algumas de suas principais aplica¢oes em fendmenos nao lineares em

grande parte da fisica.

Primeiramente, foram descritas as principais estruturas envolvidas na aplicacao do
conceito de auto-dualidade generalizada, em que foram definidas a carga topologica (Q) e
as equagoes de auto-dualidade (2.3). Observou-se que, com a combinacao das identidades,
vindas da invariancia homotépica da carga topologica, com as equacoes de auto-dualidade,
foram obtidas as equagbes de Euler-Lagrange do funcional de energia (2.5). Além disso, foi
possivel demonstrar que as solugoes auto-duais sao aquelas que saturam o limite inferior
de energia encontrado para as solugoes gerais do funcional. Posteriormente, os conceitos
discutidos foram generalizados com a matriz 7, que pode introduzir novos campos na
teoria; com essa modificagao, foram obtidas as novas equacoes de auto-dualidade (2.10) e

o novo funcional de energia (2.12).

Em seguida, foram desenvolvidos exemplos conhecidos de aplicagoes do conceito de
auto-dualidade, esses sendo Kinks em (1 + 1) dimensoes, Lumps em (2 + 1) dimensoes,
um modelo bésico de Skyrmions e monopolos em (3 + 1) dimensoes e por tltimo a teoria
de Instantons em quatro dimensoes euclidianas. Destacou-se o desenvolvimento de um
paralelo geométrico para a teoria de Kinks, onde se provou que essas curvas no espago
dos campos devem escalar para cima ou para baixo o pré-potencial e que as solugoes
com energia finita sdo as curvas que comecam e terminam em seus vacuos. Além disso,
desenvolveu-se um exemplo concreto, em (1 4 1) dimensoes, da criagdo de uma teoria a
partir do pré-potencial, usando um método baseado em teoria de grupos, especificamente

a estrutura de pesos da algebra de SU(3).

No geral, o presente trabalho exp0s as principais estruturas do conceito de auto-
dualidade e algumas de suas aplicacoes de maior impacto na fisica contemporanea. Ainda
assim, como dito em (2), ha muito a ser explorado no conceito de auto-dualidade e novos

desenvolvimentos impactantes sao esperados no futuro.
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