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RESUMO

A auto-dualidade desempenha um importante papel em muitas aplicações em teorias
de campos que possuem sólitons topológicos. Em geral, as equações de auto-dualidade
são equações diferenciais parciais de primeira ordem tais que suas soluções satisfazem
as equações de Euler-Lagrange de segunda ordem da teoria. O fato de que é necessário
realizar uma integração a menos para construir sólitons auto-duais, comparado com os
sólitons topológicos usuais, não é ligado ao uso de alguma quantidade dinamicamente
conservada. É importante que a carga topológica seja representável em forma integral,
e assim exista uma densidade de carga topológica. A invariância homotópica da carga
topológica leva a identidades locais, na forma de equações diferenciais de segunda ordem.
A relevância disso é devido a essas identidades se tornarem as equações de Euler-Lagrange
da teoria quando as equações de auto-dualidade são impostas. Serão revisadas algumas
importantes estruturas fundamentais do conceito de auto-dualidade, e mostrado como
pode ser aplicado a kinks, lumps, monopolos, Skyrmions e Instantons.

Palavras-chave: Sólitons topológicos. Auto-dualidade. Carga topológica.





SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 AUTODUALIDADE GENERALIZADA . . . . . . . . . . . . . . . . . 9

3 KINKS COM VÁRIOS CAMPOS EM (1+1) DIMENSÕES . . . . . 11
3.1 Interpretação mecânica de soluções auto-duais. . . . . . . . . . . . . 12
3.2 Exemplo – SU(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 LUMPS EM (2 + 1) DIMENSÕES . . . . . . . . . . . . . . . . . . . 17

5 (3 + 1) DIMENSÕES E INSTANTONS EM (4 + 0) DIMENSÕES . . 19
5.1 Monopolos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Um modelo mais geral do Skyrme auto-dual . . . . . . . . . . . . . . 20
5.4 Instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25





7

1 INTRODUÇÃO

Sólitons topológicos desempenham papel fundamental no estudo de fenomênos não
lineares em diversas áreas da física, eles aparecem em uma variedade de teorias, como kinks
em (1 + 1) dimensões, vórtices em (2 + 1) dimensões, monopolos magnéticos e Skyrmions
em (3+1) dimensões e Instantons em quatro dimensões euclidianas. Os sólitons topológicos
são relevantes para muitos fenômenos não lineares na física de altas energias, matéria
condensada e na ciência em geral.

Dentre os sólitons topológicos existe uma classe especial, os chamados sólitons
auto-duais. Eles são soluções clássicas das equações de auto-dualidade, que são equações
de primeira ordem que implicam nas equações de Euler-Lagrange da teoria. Além disso,
em cada setor topológico, isto é, o conjunto das soluções que possuem a mesma carga
topológica associada, existe um limite inferior da energia estática, ou ação Euclidiana,
e os sóltions auto-duais saturam esse limite. Portanto, os sólitons auto-duais são muito
estáveis.

A razão pela qual se realiza apenas uma integração para construir os sólitons
auto-duais, ao invés de duas para o caso de sóltions topológicos usuais, não está ligada a
conservação de uma quantidade dinamicamente. Em todos os casos que a auto-dualidade
funciona, a carga topológica relevante admite uma representação integral, ou seja, existe
uma densidade de carga topológica. A invariância da carga sobre qualquer variação
suave (homotópica) dos campos leva a identidades, em forma de equações diferenciais
de segunda ordem, que são satisfeitas por qualquer configuração regular dos campos,
não necessariamente solução da teoria. Entretanto, com a imposição das equações de
auto-dualidade essas identidades se tornam as equações de Euler-Lagrange da teoria.

Utilizando o conceito de auto-dualidade generalizada se pode criar, com uma carga
topológica, uma grande classe de teorias de campo contendo setores auto-duais (1). Em
(1 + 1) dimensões foi possível criar teorias de campo, com qualquer número de campos
escalares, contendo sólitons topológicos, generalizando o processo conhecido para teorias
com somente um campo escalar, como o modelo de sine-Gordon e λϕ4 (2).

Nesse trabalho, serão revisados os recentes desenvolvimentos e aplicações do conceito
de auto-dualidade generalizada proposto em (1), de uma forma simples e concisa.1

1 Será utilizada a convenção de soma em índices repetidos durante todo trabalho.
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2 AUTODUALIDADE GENERALIZADA

Considere uma teoria de campos que possui uma carga topológica que admite
representação integral da forma

Q = 1
2

∫
ddx

[
Aα Ã∗

α + A∗
α Ãα

]
, (2.1)

onde Aα e Ãα são funcionais somente dos campos da teoria e das suas primeiras derivadas,
onde ∗ se refere somente a conjugado e não transposto conjugado, α se refere a qualquer
grupo de índices. O fato de Q ser topológico significa que ele é invariante por qualquer
variação homotópica1 dos campos. Os campos serão representados por χκ; eles podem ser
escalares, vetoriais ou campos espinores, e o índice κ segue a mesma lógica do índice α

anterior. Os campos χκ serão considerados reais, ou seja, caso existam campos complexos
χκ assume a parte real e imaginária desses campos.

A invariância de Q sobre variações suaves dos campos leva à identidade

δQ = 0 → δAα

δχκ

Ã∗
α − ∂µ

(
δAα

δ∂µχκ

Ã∗
α

)
+ Aα

δÃ∗
α

δχκ

− ∂µ

(
Aα

δÃ∗
α

δ∂µχκ

)
+

δA∗
α

δχκ

Ãα − ∂µ

(
δA∗

α

δ∂µχκ

Ãα

)
+ A∗

α

δÃα

δχκ

− ∂µ

(
A∗

α

δÃα

δ∂µχκ

)
= 0.

(2.2)

Impondo as equações, de primeira ordem, de auto-dualidade nos campos

Aα = ±Ãα , (2.3)

junto com a identidade (2.2), temos as equações

δAα

δχκ

A∗
α − ∂µ

(
δAα

δ∂µχκ

A∗
α

)
+ Aα

δA∗
α

δχκ

− ∂µ

(
Aα

δA∗
α

δ∂µχκ

)
+

δÃ∗
α

δχκ

Ãα − ∂µ

(
δÃ∗

α

δ∂µχκ

Ãα

)
+ Ã∗

α

δÃα

δχκ

− ∂µ

(
Ã∗

α

δÃα

δ∂µχκ

)
= 0.

(2.4)

Note que (2.4) são as equações de Euler-Lagrange associadas ao funcional

E = 1
2

∫
ddx

[
AαA∗

α + ÃαÃ∗
α

]
. (2.5)

Portanto, equações diferenciais de primeira ordem, em conjunto com identidades
topológicas de segunda ordem, implicam as equações de Euler-Lagrange de segunda ordem.
Além disso, se E for positivo definido, então as soluções auto-duais saturam um limite
1 Ou suave.
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inferior na energia da seguinte forma. De (2.3): A2
α = Ã2

α = ±AαÃα, (2.3) também implica
AαÃ∗

α = A∗
αÃα. Dessa forma, se AαA∗

α ≥ 0, e consequentemente ÃαÃ∗
α ≥ 0:

Aα = Ãα → Q =
∫

ddx AαA∗
α

Aα = −Ãα → Q = −
∫

ddx AαA∗
α.

(2.6)

Dessa forma, é possível reescrever o funcional de energia (2.5) como

E = 1
2

∫
ddx

[
Aα ∓ Ãα

] [
A∗

α ∓ Ã∗
α

]
± 1

2

∫
ddx

[
AαÃ∗

α + A∗
αÃα

]
≥ |Q| , (2.7)

onde, para soluções auto-duais, vale a igualdade da relação

E =
∫

ddx AαA∗
α =

∫
ddx ÃαÃ∗

α = |Q| . (2.8)

A forma de separar o integrando de Q em (2.1) é bastante arbitrária, mas feita
essa escolha ainda é possível realizar uma transformação simples da seguinte forma:

Aα → A′
α = Aβkβα ; Ã∗

α → (Ã′
α)∗ = k−1

αβ Ã∗
β . (2.9)

Essa transformação não muda a forma da carga topológica, portanto Q continua
invariante por transformações homotópicas dos campos. Logo, o mesmo desenvolvimento
anterior para os funcionais Aα e Ãα pode ser repetido para os funcionais transformados
A′

α e Ã′
α. Assim, as novas equações de auto-dualidade são

Aβkβα = ±(k−1
αβ )∗Ãβ → Aβhβα = ±Ãα , (2.10)

em que foi definida a matriz inversível e hermitiana:

h ≡ kk† . (2.11)

Junto com as identidades transformadas (2.2), as novas equações de auto-dualidade
(2.10) implicam as equações de Euler-Lagrange do funcional

E ′ = 1
2

∫
ddx

[
AαhαβA∗

β + Ãαh−1
αβÃ∗

β

]
. (2.12)

Note que a matriz h pode introduzir novos campos na teoria sem mudar a carga
topológica.

Além disso, de (2.10): AαhαβA∗
β = Ãαh−1

αβÃ∗
β = ±AαÃ∗

α = ±A∗
αÃα. Portanto, se

AβhβαA∗
α ≥ 0, e consequentemente Ãαh−1

αβÃ∗
β ≥ 0, o limite inferior na energia (E ′ nesse

caso) segue da mesma forma que anteriormente

E ′ = 1
2

∫
ddx

[
Aβkβα ∓ (k−1

αβ )∗Ãβ

] [
A∗

γk∗
γα ∓ k−1

αγ A∗
γ

]
± 1

2

∫
ddx

[
AαÃ∗

α + A∗
αÃα

]
≥ |Q| .

(2.13)

A seguir, serão examinadas algumas teorias em que são aplicadas as ideias discutidas
nessa seção.
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3 KINKS COM VÁRIOS CAMPOS EM (1+1) DIMENSÕES

Setores auto-duais para teorias em (1 + 1) dimensões, contendo somente um campo
escalar, como modelos de sine-Gordon e λϕ4, são conhecidos há bastante tempo. A aplicação
das ideias discutidas nas seções anteriores levou a construção de setores auto-duais em
teorias em (1 + 1) dimensões com qualquer número de campos escalares (2). Nesta seção
serão considerados campos escalares reais. A carga topológica nesse caso é

Q =
∫ ∞

−∞
dx

dU

dx
=
∫ ∞

−∞
dx

δU

δφa

dφa

dx
= U(φa(x = ∞)) − U(φa(x = −∞)) , (3.1)

em que U é um funcional real arbitrário dos campos φa, a = 1, 2, ..., r, mas não de suas
derivadas.1 A equação acima está na mesma forma de (2.1), assim é possível realizar as
identificações

Aα ≡ kαβ
dφβ

dx
; Ãα ≡ δU

δφβ

k−1
βα , (3.2)

onde os funcionais Aα, Ãα e k são reais, e a matriz k também é inversível e arbitrária. De
acordo com (2.10), as equações auto-duais são

ηab
dφb

dx
= ± δU

δφa

; η = kT k . (3.3)

Então, η é uma matriz simétrica e inversível. Seguindo (2.12), a energia estática da
nossa teoria se torna

E =
∫ ∞

−∞
dx

[
1
2ηab

dφa

dx

dφb

dx
+ V

]
, (3.4)

onde a forma do potencial é
V = 1

2 η−1
ab

δU

δφa

δU

δφb

. (3.5)

Portanto, dos argumentos da seção anterior, segue que as soluções de (3.3) são
também soluções das equações de Euler-lagrange do funcional (3.4), onde a quantidade U

desempenha o papel de um pré-potencial. Note que, dado a escolha de um pré-potencial
U , é possível determinar o potencial V e também uma teoria de campos escalares com um
setor auto-dual. Entretanto, dado um potencial, não é trivial encontrar o pré-potencial U ;
tendo isso em vista, será discutida a construção de teorias auto-duais por meio da escolha
do pré-potencial. Nesse sentido, a análise será restringida para casos em que os campos
escalares φa, o pré-potencial U e a matriz η sejam reais. Além disso, é imposto que o
funcional E (3.4) seja positivo definido, dessa forma os autovalores de η também devem
ser positivos.
1 Isso será importante para que a carga topológica não seja função de derivadas de mais do

que primeira ordem dos campos.
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Para que as soluções auto-duais de (3.3) tenham energia finita, é necessário que a
densidade de energia em (3.4) desapareça para infinitos espaciais quando evaluado nessas
soluções, logo é necessário que

dφa

dx
→ 0 ; δU

δφa

→ 0 ; com x → ±∞. (3.6)

Portanto, as equações de auto-dualidade (3.3) devem possuir soluções constantes
de vácuo φ(vac)

a que sejam zeros para todas derivadas do pré-potencial, ou seja,

δU

δφc

∣∣∣∣∣
φa=φ

(vac)
a

= 0. (3.7)

De (3.5), essas soluções de vácuo também são zeros do potencial V e de suas
primeiras primeiras derivadas, ou seja,

V
(
φ(vac)

a

)
= 0 ; δV

δφc

∣∣∣∣∣
φa=φ

(vac)
a

= 0 . (3.8)

Ademais, é desejável que as teorias contruídas tenham diversas soluções tipo sóliton,
e que tenham um sistema de vácuos tão degenerados quanto possível para manter as
estruturas topológicas não triviais de Q. Existem diversas formas de obter esse sistema de
vácuos; nesse trabalho, será adotado o mesmo procedimento que em (2), baseado na teoria
de grupos. Não será discutido o procedimento de criação dos pré-potenciais; para detalhes,
consultar (2).

3.1 Interpretação mecânica de soluções auto-duais.

Tendo como base os desenvolvimentos em (3.6) e (3.7), soluções da equação de
auto-dualidade (3.3) com energia finita devem tender a soluções constantes de vácuo
quando x → ±∞. Assim, cada uma dessas soluções conecta dois vácuos da teoria. Para
desenvolver uma visualização geométrica dessas soluções, serão reescritas as equações de
auto-dualidade da seguinte forma:

v⃗ = ±∇⃗ηU ; com (v⃗)a = dφa

dx
;

(
∇⃗ηU

)
a

= η−1
ab

δU

δφb

. (3.9)

Dado o potencial U e a métrica η, que é real, constante e positiva, ∇⃗ηU define
curvas no espaço dos campos (φ1, φ2, ... , φr),2 fazendo o papel de vetor tangente a essas
curvas. Essas curvas não se intersectam; para manter ∇⃗ηU bem definido em qualquer ponto
do espaço dos campos, no máximo elas podem se tocar tangencialmente ou se encontrar
2 O índice utilizado (r) a príncipio não possui qualquer significado, mas o uso se deu devido ao

conceito de rank de uma álgebra de Lie. No caso das construções utilizando teoria de grupos:
r = rank (G).
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em pontos em que ∇⃗ηU zera. A equação de auto-dualidade (3.3) é uma equação diferencial
de primeira ordem, logo uma solução é determinada pelo valor dos campos φa em um
ponto x = x0.

A visão geométrica é a de uma partícula viajando no espaço dos φa com x-velocidade
v⃗ e com a coordenada espacial x desempenhando o papel do tempo. Portanto, o problema
de resolver a equação de auto-dualidade se reduz ao de construir curvas no espaço dos
campos determinadas por ∇⃗ηU . As soluções de energia finita correponderão às curvas
que começam e terminam nos extremos do pré-potencial U , ou seja, nos pontos em que
∇⃗ηU = 0.

Considere agora uma curva γ no espaço dos campos, parametrizada por x, ou seja,
φa(x), que seja solução das equações de auto-dualidade (3.3). Associada a essa curva é
definida a quantidade

Q̃(γ) =
∫

γ
dx v⃗ · ∇⃗U =

∫
γ

dx
dφa

dx

δU

δφa

= U(xf ) − U(xi), (3.10)

em que xf e xi são os pontos final e inicial, respectivamente, da curva γ. Perceba que o
vetor tangente à curva é ∇⃗ηU e não ∇⃗U , uma vez que a curva é solução das equações
(3.3). Utilizando as equações de auto-dualiadade é possível reescrever a equação (3.10) da
seguinte forma:

Q̃(γ) = ±
∫

γ
dx ηab

dφa

dx

dφb

dx
= ±

∫
γ

dx ωa

(
dφ̃a

dx

)2

, (3.11)

em que a matriz η foi diagonalizada, ou seja,

η = ΛT ηDΛ ; ΛT Λ = 1 ; ηD
ab = ωaδab ; ωa > 0 , (3.12)

onde foi assumido que todos autovalores de η são positivos, e foi definido φ̃a = Λabφb.
Mantendo η como positiva definida, a quantidade Q̃(γ) só pode assumir o valor zero se os
campos forem constantes por toda curva, ou seja, a curva teria que se reduzir a um ponto.
Logo, as soluções das equações de auto-dualidade (3.3) não podem começar e acabar em
pontos no espaço dos campos em que o pré-potencial U possui o mesmo valor. Além disso,
conforme alguém anda pela curva a diferença do valor do pré-potencial de um particular
ponto e do ponto inicial sempre aumenta em módulo. Portanto, a curva, que é solução das
equações (3.3), sempre escala o pré-potencial U , para cima ou para baixo dependendo do
sinal tomado na equação (3.3), sem nunca retornar a uma altitude já atingida.

3.2 Exemplo – SU(3)

Nesta seção será apresentado um exemplo concreto dos conceitos discutidos nas
seções (2) e (3). No exemplo que segue, a matriz η será constante3, real e positiva definida.
Mesmo com essas restrições ainda é possível construir teorias interessantes.
3 Isto é, não irá depender dos campos φa da teoria ou de outros campos externos.
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O rank de SU(3) é dois, portanto a teoria possuirá dois campos φ1 e φ2. A matriz
η é escolhida tal que4

η =
 2 −λ

−λ 2

 ; η−1 = 1
4 − λ2

2 λ

λ 2

 , (3.13)

onde foi introduzido o parâmetro real λ. Os autovalores de η são 2 ± λ, portanto λ deve se
manter no intervalo 2 < λ < −2, para manter η positiva definida e inversível. Por meio de
um procedimento utilizando teoria de grupos5, é obtido o pré-potencial

U = γ1 cos (φ1) + γ2 cos (φ2) + γ3 cos (φ1 − φ2) , (3.14)

em que γ1, γ2 e γ3 são constantes arbitrárias.

A energia estática (3.4) se torna

E =
∫ ∞

−∞
dx

[
(∂xφ1)2 + (∂xφ2)2 − λ∂xφ1∂xφ2 + V (φ1, φ2)

]
, (3.15)

onde o potencial (3.5) é dado por

V = 1
λ2 − 4[−γ2

1 sin2(φ1) + γ1 sin(φ1)(γ3(λ − 2) sin(φ1 − φ2) − γ2λ sin(φ2))

− γ2
2 sin2(φ2) − γ2γ3(λ − 2) sin(φ2) sin(φ1 − φ2) + γ2

3(λ − 2) sin2(φ1 − φ2)] .

(3.16)

As equações de auto-dualidade (3.3) são da forma

∂xφ1 = ± [2γ1 sin(φ1) + λγ2 sin(φ2) − γ3(λ − 2) sin(φ1 − φ2)]
λ2 − 4 ,

∂xφ2 = ± [2γ2 sin(φ2) + λγ1 sin(φ1) + γ3(λ − 2) sin(φ1 − φ2)]
λ2 − 4 .

(3.17)

Os vácuos são determinados pelas condições (3.7), que implicam

γ1 sin
(
φ

(vac)
1

)
= −γ3 sin

(
φ

(vac)
1 − φ

(vac)
2

)
= −γ2 sin

(
φ

(vac)
2

)
. (3.18)

Certamente, a equação acima é satisfeita se

φ(vac)
a = naπ , na ∈ Z, a = 1, 2 , (3.19)

para qualquer valor para os coeficientes γ. Entretanto, existem outros tipos de vácuo que
dependem do valor escolhido para cada γ, como(

φ
(vac)
1 , φ

(vac)
2

)
=
(2π

3 + 2π n1 ,
4π

3 + 2π n2

)
; γ1 = γ2 = γ3 = 1,(

φ
(vac)
1 , φ

(vac)
2

)
=
(4π

3 + 2π n1 ,
2π

3 + 2π n2

)
; n1 , n2 ∈ Z .

(3.20)

4 Note que η|λ=1 = K, com K sendo a matriz de Cartan de SU(3). (3)
5 A construção se baseia nos pesos das representações da algebra. Para mais detalhes consultar

(2).
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(a) (b)

(c) (d)

Figura 1 – (a) e (c) são representações do pré-potencial (3.14), e (b) e (c) do potencial
(3.16). Os vácuos do tipo (3.19) são os pontos pretos, enquanto os do tipo
(3.20) são denotados por quadrados em branco. As linhas representam o fluxo
de ∇⃗U e ∇⃗V , em que ∇⃗ = (∂φ1 , ∂φ2). Nos gráficos, foi utilizado λ = 1 e
γ1 = γ2 = γ3 = 1.

Fonte: Elaborado pelo autor.
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4 LUMPS EM (2 + 1) DIMENSÕES

Como um exemplo de uma teoria com um setor auto-dual, será considerado o modelo
CPN−1 em (2+1) dimensões. CPN−1 é o espaço projetivo complexo de (N −1) dimensões, ou
seja, o espaço de todas as classes equivalentes de vetores complexos z = (z1 , z2 , ... , zN),
tal que dois vetores z e z′ são equivalentes se z′ = λz, sendo λ um número complexo (4,5).
Serão considerados os representantes dessas classes como os vetores unitários

z = (z1, z2, ..., zN) ; z∗
aza = 1 . (4.1)

CPN−1 é isomórfico a SU(N)/SU(N − 1) ⊗ U(1). De fato, o grupo SU(N) age
transitivamente nos vetores z por meio da sua representação definidora N − dimensional.
Como essa representação é unitária, sua ação preserva o módulo dos vetores z, e um dado
vetor é mantido invariante por matrizes (N − 1) × (N − 1) unitárias, ou seja, o subgrupo
U(N − 1) = SU(N − 1) ⊗ U(1).

O segundo grupo de homotopia de CPN−1 é isomórfico aos inteiros sobre adição,
ou seja, π2 (SU(N)/SU(N − 1) ⊗ U(1)) = Z. A carga topológica associada possui uma
representação integral da forma

Q = 1
2π

∫
d2x εµν∂µAν , (4.2)

onde
Aµ = i

2
(
z†∂µz − ∂µz†z

)
. (4.3)

A integração em (4.2) é no plano bidimensional (x1, x2), que, identificando o infinito espacial,
é isomórfico à S2.1 Sobre a transformação local z → eiαz, será obtido Aµ → Aµ − ∂µα.
Definindo a derivada covariante Dµ ≡ ∂µ + iAµ, (4.2) pode ser reescrita como

Q = i

2π

∫
d2x εµν (Dµz)† (Dνz) = 1

4π

∫
d2x

[
(Dµz)† i εµν Dνz + (i εµν Dνz)† Dµz

]
. (4.4)

Seguindo (2.9), são definidas as quantidades:

Aa
µ = (Dµz)b kba ; Ãa

µ =
(
k−1

ab

)∗
i εµν (Dνz)b , (4.5)

logo a carga (4.4) pode ser escrita na forma (2.1). De (2.10), as equações de auto-dualidade
são

(Dµz)b hba = ± i εµν (Dνz)a . (4.6)

De acordo com (2.12), o funcional da energia se torna

E = 1
2

∫
d2x

[
(Dµz)∗

a hab (Dµz)b + (Dµz)∗
a h−1

ab (Dµz)b

]
. (4.7)

1 Superfície da esfera tridimensional.
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Contraindo os dois lados de (4.6) com ερµ, obtém-se

(Dµz)a = ± i εµν (Dνz)b hba . (4.8)

Portanto, (4.6) e (4.8) implicam

(Dµz)b

(
hba − h−1

ba

)
= 0 → h2 = 1 , (4.9)

mas uma matriz hermitiana pode ser diagonalizada por uma transformação unitária,
h = UhDU †, com hD diagonal. Logo

h2 = 1 → h2
D = 1 , (4.10)

assim λ2
a = 1. Porém, para a energia E (4.7) ser positiva definida, é necessário que todos

autovalores de h tenham o mesmo sinal. Então

h = 1 . (4.11)

Nesse caso, (4.6) reduz-se às equações de auto-dualidade para o modelo CPN−1 usual (4,5),

(Dµz)a = ± i εµν (Dνz)a , (4.12)

e (4.7) à energia usual do modelo CPN−1,

E =
∫

d2x (Dµz)† Dµz . (4.13)

Para construir soluções auto-duais da equação (4.12), é conveniente introduzir
novos campos complexos ua como

(u(j)
1 , u

(j)
2 , ..., u

(j)
N−1, u

(j)
N ) = 1

zj

(z1, z2, ..., zN−1, zN) , (4.14)

em que u
(j)
j = 1, ou seja, as coordenadas são u(j)

α , α ̸= j. Pode ser escolhida qualquer
componente za para construir o campo ua; nesse caso, será escolhida a componente zN ,
logo uα, α = 1, ..., N − 1 são as coordenadas. Podemos reescrever a equação (4.12) em
termo das novas coordenadas da seguinte forma: (4)

∂µuα = ± i εµν ∂νuα ; α = 1, 2, ..., N − 1. (4.15)

Essas são as equações de Cauchy-Riemann para os campos u. De fato, o sinal (+)
implica que u é holomórfico, ou seja, uα = uα(ω), e o sinal (−) que u é anti-holomórfico,
ou seja, uβ = uβ(ω∗), em que ω = x1 + ix2.
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5 (3 + 1) DIMENSÕES E INSTANTONS EM (4 + 0) DIMENSÕES

5.1 Monopolos

Será considerado o caso da carga magnética topológica definida pela integral no
espaço de três dimensões R3

QM = −1
2

∫
R3

d3x εijk Tr (FijDkΦ) =
∫

R3
d3x Tr (BiDi) , (5.1)

onde Bi = −1
2 εijk Fjk é o campo magnético não abeliano, Fij = ∂iAj − ∂jAi − ie[Ai, Aj] =

F a
ijTa o tensor dos campos, Ai = Aa

i Ta o campo de gauge, e Φ = ΦaTa o campo de
Higgs na representação adjunta de um grupo de Lie simples e compacto, com geradores
Ta , a = 1, 2, ..., dim G. Além disso, Di(∗) = ∂i(∗) + ie[Ai, (∗)] é a derivada covariante na
representação adjunta de G.

Nesse caso todos os campos são reais. Logo, seguindo (2.10) e os resultados em (6),
são introduzidas as quantidades reais

Aα ≡ Bb
i kba ; Ãα ≡ k−1

ab (DiΦ)b , (5.2)

então (5.1) pode ser escrita como (2.1). As equações de auto-dualidade (2.10) se tornam

1
2 εijkF b

jk hba = ±(DiΦ)a ; h = k kT , (5.3)

com hab, a, b = 1, 2, ..., dim G, uma matriz simétrica e inversível de campos escalares.
As equações (5.3) constituem uma generalização das equações BPS (Bogomolny-Prasad-
Sommerfield) (7, 8) para monopolos auto-duais. O funcional de energia (2.12) se torna
(6)

EY MH =
∫

d3x
[1
4habF

a
ijF

b
ij + 1

2h−1
ab (DiΦ)a(DiΦ)b

]
, (5.4)

portanto essa é uma teoria com campos de gauge Aµ, campo de Higgs Φ na representação
adjunta do grupo de gauge, e campos escalares reais na matriz h. A energia (5.4) avaliada
nas soluções auto-duais de (5.3) é igual à carga magnética topológica

EY MH = QM . (5.5)

Para mais detalhes na construção de soluções auto-duais dessa teoria, consultar
(6).

5.2 Skyrmions

Skyrmions são sólitons topológicos soluções de teorias em (3 + 1) dimensões com o
grupo SU(2) como espaço-alvo. Os três campos em SU(2) são interpretados como os três
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píons π+, π0 e π−. Essas soluções são interpretadas seguindo a proposta de Skyrme (9,10),
em que a carga topológica desempenha o papel de número bariônico (11,12).

A carga topológica relevante nesse caso é dada pela integral sobre o espaço tridi-
mensional R3

QB = i

48π2

∫
d3x K(U) εijk Tr(RiRjRk) , (5.6)

com Ri = i∂iUU † = Ra
i Ta, U ∈ SU(2), e K(U) é um funcional real arbitrário dos campos

quirais U , mas não de suas derivadas. K pode ser interpretado como uma deformação
na métrica do espaço-alvo SU(2). A notação utilizada é tal que Tr(TaTb) = δab, com
Ta , a = 1, 2, 3 sendo os geradores da álgebra de Lie de SU(2).

Seguindo (2.1), serão definidas as quantidades reais

Aα ≡ λ

24 εijk Tr(RiRjRk) ; Ãα ≡ K = µ
√

V , (5.7)

em que λ e µ são constantes de acoplamento, e V desempenha o papel de um potencial.
As equações de auto-dualidade (2.3) se tornam

λ

24 εijk Tr(RiRjRk) = ± µ
√

V . (5.8)

Assim, o funcional de energia se torna

E =
∫

d3x

[
λ2

(24)2 B0B0 + µ2V

]
, (5.9)

com B0 = εijkTr(RiRjRk). Esse modelo foi proposto em (13) e foi aplicado em muitos
contextos em física de estrelas de neutrôns e nuclear (14). As soluções de (5.13) foram cons-
truídas utilizando um ansatz esfericamente simétrico, para o potencial V = Tr(1 − U)/2,
as soluções são de tal forma que os campos vão a zero para um valor finito de distância
radial.

5.3 Um modelo mais geral do Skyrme auto-dual

Usando o fato de que as quantidades Ri = i∂iUU † satisfazem a equação de Maurer-
Cartan

∂µRν − ∂νRµ + i[Rµ, Rν ] = 0 , (5.10)

podemos escrever a carga topológica (5.6), para K = 1, como

QB = i

96π2

∫
d3x εijkTr(Ri [Rj, Rk]) = − 1

96π2

∫
d3x εijkTr(Ri(∂jRk − ∂kRj))

= − 1
48π2

∫
d3x εijkRa

i ∂jR
a
k ≡ − 1

48π2
e0

m0

∫
d3x Aa

i Ãa
i ,

(5.11)

em que foram introduzidas as quantidades reais

Aa
i ≡ m0 Rb

ikba ; Ãa
i ≡ 1

e0
k−1

ab εijk∂jR
b
k , (5.12)
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sendo kab uma matriz inversível, m0 e e0 constantes de acoplamento. Logo, a carga
topológica (5.6), para K = 1, pode ser escrita da mesma forma que (2.1). Com isso, as
equações de auto-dualidade (2.3) se tornam

λ habR
b
i = 1

2 εijk Ha
jk com λ = ±m0e0 , (5.13)

onde h = kkT é uma matriz real, simétrica e inversível, e definimos Ha
ij = ∂iR

a
j − ∂jR

a
i =

εabcR
b
µRc

ν . Dessa forma, o funcional de energia (2.12) se torna

E =
∫

d3x

[
m2

0
2 habR

a
i Rb

i + 1
4e2

o

h−1
ab Ha

ijH
b
ij

]
. (5.14)

A energia das soluções auto-duais de (5.13) é dada por

E = 48π2 m0

e0
|Q| . (5.15)

Essa teoria foi proposta em (15) e explorada mais a fundo em (16), em que as
entradas da matriz hab são consideradas como seis campos reais adicionados à teoria. Note
que, para h = 1 o modelo se reduz para o modelo original de Skyrme. A carga topológica
(5.11) é interpretada, seguindo Skyrme, como o número bariônico. Mais recentemente,
tal modelo foi extendido considerando uma potência fracional da densidade de carga
topológica como um parâmetro de ordem para descrever um fluido de matéria bariônica. O
modelo descreve com boa precisão a energia de ligação de mais de 240 núcleos, e também
a relação entre seus raios e número bariônico.

5.4 Instantons

Como um último exemplo de aplicação dos métodos descritos no capítulo 2, será
apresentado o caso de soluções de instantons para a teoria de Yang-Mills em quatro dimen-
sões Euclidianas. A carga topológica relevante para esse caso é o número de Pontryagin

QY M =
∫

d4x Tr
(
FµνF̃ µν

)
, (5.16)

sendo Fµν o tensor dos campos e F̃µν seu dual de Hodge, ou seja,

Fµν = ∂µAν − ∂νAµ + ie[Aµ, Aν ] ; F̃µν = 1
2 εµνρσ F ρσ , (5.17)

sendo Aµ o potencial de gauge para um grupo compacto de Lie. Seguindo (2.1):

Aα ≡ Fµν ; Ãα ≡ F̃µν . (5.18)

Assim, as equações de auto-dualidade (2.3) se tornam

Fµν = ±F̃µν , (5.19)
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e o funcional (2.5) se torna a ação Euclidiana de Yang-Mills 1

SY M = 1
8

∫
d4x

[
Tr(FµνFµν) + Tr

(
F̃µνF̃µν

)]
= 1

4

∫
d4x Tr(FµνFµν) . (5.20)

As soluções de (5.19) são bem conhecidas e são chamadas de soluções instanton da
teoria de Yang-Mills. Essas soluções desempenham papéis importantes na estrutura dos
vácuos e também fenômenos não perturbativos em teorias de Yang-Mills (11,17).

Seguindo (2.9), é possível introduzir uma matriz inversível, simétrica e real hab nas
equações de auto-dualidade (5.19)

F b
µν hba = ±F̃ a

µν ; Fµν = F a
µνTa , F̃µν = F̃ a

µνTa , (5.21)

com Ta, a = 1, 2, ..., dim G, sendo Ta uma base para a álgebra de Lie para o grupo de gauge
G. Além disso, seguindo o mesmo procedimento que de (4.9 - 4.11) chegamos à conclusão
de que h = 1.

1 Aqui foi utilizado o fato de que Tr(FµνFµν) = Tr
(
F̃µνF̃µν

)
.
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6 CONCLUSÃO

O objetivo desse trabalho foi revisar estruturas fundamentais do conceito de auto-
dualidade, e mostrar algumas de suas principais aplicações em fenômenos não lineares em
grande parte da física.

Primeiramente, foram descritas as principais estruturas envolvidas na aplicação do
conceito de auto-dualidade generalizada, em que foram definidas a carga topológica (Q) e
as equações de auto-dualidade (2.3). Observou-se que, com a combinação das identidades,
vindas da invariância homotópica da carga topológica, com as equações de auto-dualidade,
foram obtidas as equações de Euler-Lagrange do funcional de energia (2.5). Além disso, foi
possível demonstrar que as soluções auto-duais são aquelas que saturam o limite inferior
de energia encontrado para as soluções gerais do funcional. Posteriormente, os conceitos
discutidos foram generalizados com a matriz η, que pode introduzir novos campos na
teoria; com essa modificação, foram obtidas as novas equações de auto-dualidade (2.10) e
o novo funcional de energia (2.12).

Em seguida, foram desenvolvidos exemplos conhecidos de aplicações do conceito de
auto-dualidade, esses sendo Kinks em (1 + 1) dimensões, Lumps em (2 + 1) dimensões,
um modelo básico de Skyrmions e monopolos em (3 + 1) dimensões e por último a teoria
de Instantons em quatro dimensões euclidianas. Destacou-se o desenvolvimento de um
paralelo geométrico para a teoria de Kinks, onde se provou que essas curvas no espaço
dos campos devem escalar para cima ou para baixo o pré-potencial e que as soluções
com energia finita são as curvas que começam e terminam em seus vácuos. Além disso,
desenvolveu-se um exemplo concreto, em (1 + 1) dimensões, da criação de uma teoria a
partir do pré-potencial, usando um método baseado em teoria de grupos, especificamente
a estrutura de pesos da álgebra de SU(3).

No geral, o presente trabalho expôs as principais estruturas do conceito de auto-
dualidade e algumas de suas aplicações de maior impacto na física contemporânea. Ainda
assim, como dito em (2), há muito a ser explorado no conceito de auto-dualidade e novos
desenvolvimentos impactantes são esperados no futuro.
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